
cmake

#cmake

Table of Contents

About 1

Chapter 1: Getting started with cmake 2

Remarks 2

Versions 2

Examples 3

CMake Installation 3

Switching between build types, e.g. debug and release 4

Simple "Hello World" Project 5

"Hello World" with multiple source files 6

"Hello World" as a library 7

Chapter 2: Add Directories to Compiler Include Path 8

Syntax 8

Parameters 8

Examples 8

Add a Project's Subdirectory 8

Chapter 3: Build Configurations 9

Introduction 9

Examples 9

Setting a Release/Debug configuration 9

Chapter 4: Build Targets 10

Syntax 10

Examples 10

Executables 10

Libraries 10

Chapter 5: CMake integration in GitHub CI tools 12

Examples 12

Configure Travis CI with stock CMake 12

Configure Travis CI with newest CMake 12

Chapter 6: Compile features and C/C++ standard selection 14

Syntax 14

Examples 14

Compile Feature Requirements 14

C/C++ version selection 14

Chapter 7: Configure file 16

Introduction 16

Remarks 16

Examples 16

Generate a c++ configure file with CMake 17

Examble based on SDL2 control version 17

Chapter 8: Create test suites with CTest 20

Examples 20

Basic Test Suite 20

Chapter 9: Custom Build-Steps 21

Introduction 21

Remarks 21

Examples 21

Qt5 dll copy example 21

Running a Custom Target 22

Chapter 10: Functions and Macros 24

Remarks 24

Examples 24

Simple Macro to define a variable based on input 24

Macro to fill a variable of given name 24

Chapter 11: Hierarchical project 26

Examples 26

Simple approach without packages 26

Chapter 12: Packaging and Distributing Projects 27

Syntax 27

Remarks 27

Examples 27

Creating a package for a built CMake project 27

Selecting a CPack Generator to be used 28

Chapter 13: Search and use installed packages, libraries and programs 29

Syntax 29

Parameters 29

Remarks 29

Examples 29

Use find_package and Find.cmake modules 29

Use pkg_search_module and pkg_check_modules 30

Chapter 14: Test and Debug 32

Examples 32

General approach to debug when building with Make 32

Let CMake create verbose Makefiles 32

Debug find_package() errors 32

CMake internally supported Package/Module 32

CMake enabled Package/Library 33

Chapter 15: Using CMake to configure preproccessor tags 35

Introduction 35

Syntax 35

Remarks 35

Examples 35

Using CMake to define the version number for C++ usage 35

Chapter 16: Variables and Properties 37

Introduction 37

Syntax 37

Remarks 37

Examples 37

Cached (Global) Variable 37

Local Variable 37

Strings and Lists 38

Variables and the Global Variables Cache 38

Use Cases for Cached Variables 39

Adding profiling flags to CMake to use gprof 40

Credits 41

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: cmake

It is an unofficial and free cmake ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official cmake.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/cmake
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with cmake

Remarks

CMake is a tool for defining and managing code builds, primarily for C++.

CMake is a cross-platform tool; the idea is to have a single definition of how the project is built -
which translates into specific build definitions for any supported platform.

It accomplishes this by pairing with different platform-specific buildsystems; CMake is an
intermediate step, that generates build input for different specific platforms. On Linux, CMake
generates Makefiles; on Windows, it can generate Visual Studio projects, and so on.

Build behavior is defined in CMakeLists.txt files - one in every directory of the source code. Each
directory's CMakeLists file defines what the buildsystem should do in that specific directory. It also
defines which subdirectories CMake should handle as well.

Typical actions include:

Build a library or an executable out of some of the source files in this directory.•
Add a filepath to the include-path used during build.•
Define variables that the buildsystem will use in this directory, and in its subdirectories.•
Generate a file, based on the specific build configuration.•
Locate a library which is somewhere in the source tree.•

The final CMakeLists files can be very clear and straightforward, because each is so limited in
scope. Each only handles as much of the build as is present in the current directory.

For official resources on CMake, see CMake's Documentation and Tutorial.

Versions

Version Release Date

3.9 2017-07-18

3.8 2017-04-10

3.7 2016-11-11

3.6 2016-07-07

3.5 2016-03-08

3.4 2015-11-12

3.3 2015-07-23

https://riptutorial.com/ 2

https://cmake.org/documentation/
https://cmake.org/cmake-tutorial/
https://cmake.org/cmake/help/v3.9/release/3.9.html
https://cmake.org/cmake/help/v3.8/release/3.8.html
https://cmake.org/cmake/help/v3.7/release/3.7.html
https://cmake.org/cmake/help/v3.6/release/3.6.html
https://cmake.org/cmake/help/v3.6/release/3.5.html
https://cmake.org/cmake/help/v3.6/release/3.4.html
https://cmake.org/cmake/help/v3.6/release/3.3.html

Version Release Date

3.2 2015-03-10

3.1 2014-12-17

3.0 2014-06-10

2.8.12.1 2013-11-08

2.8.12 2013-10-11

2.8.11 2013-05-16

2.8.10.2 2012-11-27

2.8.10.1 2012-11-07

2.8.10 2012-10-31

2.8.9 2012-08-09

2.8.8 2012-04-18

2.8.7 2011-12-30

2.8.6 2011-12-30

2.8.5 2011-07-08

2.8.4 2011-02-16

2.8.3 2010-11-03

2.8.2 2010-06-28

2.8.1 2010-03-17

2.8 2009-11-13

2.6 2008-05-05

Examples

CMake Installation

Head over to CMake download page and get a binary for your operating system, e.g. Windows,
Linux, or Mac OS X. On Windows double click the binary to install. On Linux run the binary from a
terminal.

https://riptutorial.com/ 3

https://cmake.org/cmake/help/v3.6/release/3.2.html
https://cmake.org/cmake/help/v3.6/release/3.1.html
https://cmake.org/cmake/help/v3.6/release/3.0.html
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.12.1
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.12
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.11
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.10.2
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.10.1
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.10
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.9
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.8
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.7
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.6
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.5
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.4
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.3
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.2
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.1
https://cmake.org/files/v2.8/CMakeChangeLog-2.8.0
https://cmake.org/pipermail/cmake/2008-May/021490.html
https://cmake.org/download/

On Linux, you can also install the packages from the distribution's package manager. On Ubuntu
16.04 you can install the command-line and graphical application with:

sudo apt-get install cmake
sudo apt-get install cmake-gui

On FreeBSD you can install the command-line and the Qt-based graphical application with:

pkg install cmake
pkg install cmake-gui

On Mac OSX, if you use one of the package managers available to install your software, the most
notable being MacPorts (MacPorts) and Homebrew (Homebrew), you could also install CMake via
one of them. For example, in case of MacPorts, typing the following

sudo port install cmake

will install CMake, while in case you use the Homebrew package manger you will type

brew install cmake

Once you have installed CMake you can check easily by doing the following

cmake --version

You should see something similar to the following

cmake version 3.5.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).

Switching between build types, e.g. debug and release

CMake knows several build types, which usually influence default compiler and linker parameters
(such as debugging information being created) or alternative code paths.

By default, CMake is able to handle the following build types:

Debug: Usually a classic debug build including debugging information, no optimization etc.•
Release: Your typical release build with no debugging information and full optimization.•
RelWithDebInfo:: Same as Release, but with debugging information.•
MinSizeRel: A special Release build optimized for size.•

How configurations are handled depends on the generator that is being used.

Some generators (like Visual Studio) support multiple configurations. CMake will generate all
configurations at once and you can select from the IDE or using --config CONFIG (with cmake --
build) which configuration you want to build. For these generators CMake will try its best to

https://riptutorial.com/ 4

https://www.macports.org/
http://brew.sh/

generate a build directory structure such that files from different configurations do not step on each
other.

Generators that do only support a single configuration (like Unix Makefiles) work differently. Here
the currently active configuration is determined by the value of the CMake variable
CMAKE_BUILD_TYPE.

For example, to pick a different build type one could issue the following command line commands:

cmake -DCMAKE_BUILD_TYPE=Debug path/to/source
cmake -DCMAKE_BUILD_TYPE=Release path/to/source

A CMake script should avoid setting the CMAKE_BUILD_TYPE itself, as it's generally considered the
users responsibility to do so.

For single-config generators switching the configuration requires re-running CMake. A subsequent
build is likely to overwrite object files produced by the earlier configuration.

Simple "Hello World" Project

Given a C++ source file main.cpp defining a main() function, an accompanying CMakeLists.txt file
(with the following content) will instruct CMake to generate the appropriate build instructions for
the current system and default C++ compiler.

main.cpp (C++ Hello World Example)

#include <iostream>

int main()
{
 std::cout << "Hello World!\n";
 return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.4)

project(hello_world)

add_executable(app main.cpp)

See it live on Coliru

cmake_minimum_required(VERSION 2.4) sets a minimum CMake version required to evaluate the
current script.

1.

project(hello_world) starts a new CMake project. This will trigger a lot of internal CMake
logic, especially the detection of the default C and C++ compiler.

2.

With add_executable(app main.cpp) a build target app is created, which will invoke the 3.

https://riptutorial.com/ 5

http://www.riptutorial.com/cplusplus/topic/206/getting-started-with-cplusplus
http://coliru.stacked-crooked.com/a/cf4bdd447ec1e743
https://cmake.org/cmake/help/latest/command/cmake_minimum_required.html
https://cmake.org/cmake/help/latest/command/project.html
https://cmake.org/cmake/help/latest/command/add_executable.html

configured compiler with some default flags for the current setting to compile an executable
app from the given source file main.cpp.

Command Line (In-Source-Build, not recommended)

> cmake .
...
> cmake --build .

cmake . does the compiler detection, evaluates the CMakeLists.txt in the given . directory and
generates the build environment in the current working directory.

The cmake --build . command is an abstraction for the necessary build/make call.

Command Line (Out-of-Source, recommended)

To keep your source code clean from any build artifacts you should do "out-of-source" builds.

> mkdir build
> cd build
> cmake ..
> cmake --build .

Or CMake can also abstract your platforms shell's basic commands from above's example:

> cmake -E make_directory build
> cmake -E chdir build cmake ..
> cmake --build build

"Hello World" with multiple source files

First we can specify the directories of header files by include_directories(), then we need to
specify the corresponding source files of the target executable by add_executable(), and be sure
there's exactly one main() function in the source files.

Following is a simple example, all the files are assumed placed in the directory PROJECT_SOURCE_DIR.

main.cpp

#include "foo.h"

int main()
{
 foo();
 return 0;
}

foo.h

void foo();

https://riptutorial.com/ 6

https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/v3.0/command/include_directories.html
https://cmake.org/cmake/help/v3.0/command/add_executable.html

foo.cpp

#include <iostream>
#include "foo.h"

void foo()
{
 std::cout << "Hello World!\n";
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.4)

project(hello_world)

include_directories(${PROJECT_SOURCE_DIR})
add_executable(app main.cpp foo.cpp) # be sure there's exactly one main() function in the
source files

We can follow the same procedure in the above example to build our project. Then executing app
will print

>./app
Hello World!

"Hello World" as a library

This example shows how to deploy the "Hello World" program as a library and how to link it with
other targets.

Say we have the same set of source/header files as in the
http://www.riptutorial.com/cmake/example/22391/-hello-world--with-multiple-source-files example.
Instead of building from multiple source files, we can first deploy foo.cpp as a library by using
add_library() and afterwards linking it with the main program with target_link_libraries().

We modify CMakeLists.txt to

cmake_minimum_required(VERSION 2.4)

project(hello_world)

include_directories(${PROJECT_SOURCE_DIR})
add_library(applib foo.cpp)
add_executable(app main.cpp)
target_link_libraries(app applib)

and following the same steps, we'll get the same result.

Read Getting started with cmake online: https://riptutorial.com/cmake/topic/862/getting-started-
with-cmake

https://riptutorial.com/ 7

http://www.riptutorial.com/cmake/example/7501/simple--hello-world--project
http://www.riptutorial.com/cmake/example/22391/-hello-world--with-multiple-source-files
https://cmake.org/cmake/help/v3.0/command/add_library.html
https://cmake.org/cmake/help/v3.0/command/target_link_libraries.html
https://riptutorial.com/cmake/topic/862/getting-started-with-cmake
https://riptutorial.com/cmake/topic/862/getting-started-with-cmake

Chapter 2: Add Directories to Compiler
Include Path

Syntax

include_directories([AFTER|BEFORE] [SYSTEM] dir1 [dir2 ...])•

Parameters

Parameter Description

dirN one ore more relative or absolute paths

AFTER,
BEFORE

(optional) whether to add the given directories to the front or end of the current
list of include paths; default behaviour is defined by
CMAKE_INCLUDE_DIRECTORIES_BEFORE

SYSTEM
(optional) tells the compiler to tread the given directories as system include dirs,
which might trigger special handling by the compiler

Examples

Add a Project's Subdirectory

Given the following project structure

include\
 myHeader.h
src\
 main.cpp
CMakeLists.txt

the following line in the CMakeLists.txt file

include_directories(${PROJECT_SOURCE_DIR}/include)

adds the include directory to the include search path of the compiler for all targets defined in this
directory (and all its subdirectories included via add_subdirectory()).

Thus, the file myHeader.h in the project's include subdirectory can be included via #include
"myHeader.h" in the main.cpp file.

Read Add Directories to Compiler Include Path online:
https://riptutorial.com/cmake/topic/5968/add-directories-to-compiler-include-path

https://riptutorial.com/ 8

http://www.riptutorial.com/cmake/example/4719/simple-approach-without-packages
https://riptutorial.com/cmake/topic/5968/add-directories-to-compiler-include-path

Chapter 3: Build Configurations

Introduction

This topic shows the uses of different CMake configurations like Debug or Release, in different
environments.

Examples

Setting a Release/Debug configuration

CMAKE_MINIMUM_REQUIRED(VERSION 2.8.11)
SET(PROJ_NAME "myproject")
PROJECT(${PROJ_NAME})

Configuration types
SET(CMAKE_CONFIGURATION_TYPES "Debug;Release" CACHE STRING "Configs" FORCE)
IF(DEFINED CMAKE_BUILD_TYPE AND CMAKE_VERSION VERSION_GREATER "2.8")
 SET_PROPERTY(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS ${CMAKE_CONFIGURATION_TYPES})
ENDIF()

SET(${PROJ_NAME}_PATH_INSTALL "/opt/project" CACHE PATH "This
directory contains installation Path")
SET(CMAKE_DEBUG_POSTFIX "d")

Install
#---#
INSTALL(TARGETS ${PROJ_NAME}
 DESTINATION "${${PROJ_NAME}_PATH_INSTALL}/lib/${CMAKE_BUILD_TYPE}/"
)

Performin the following builds will generate two different ('/opt/myproject/lib/Debug'
'/opt/myproject/lib/Release') folders with the libraries:

$ cd /myproject/build
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
$ make
$ sudo make install
$ cmake _DCMAKE_BUILD_TYPE=Release ..
$ make
$ sudo make install

Read Build Configurations online: https://riptutorial.com/cmake/topic/8319/build-configurations

https://riptutorial.com/ 9

https://riptutorial.com/cmake/topic/8319/build-configurations

Chapter 4: Build Targets

Syntax

add_executable(target_name [EXCLUDE_FROM_ALL] source1 [source2...])•
add_library(lib_name [STATIC|SHARED|MODULE] [EXCLUDE_FROM_ALL] source1
[source2 ...])

•

Examples

Executables

To create a build target producing an executable, one should use the add_executable command:

add_executable(my_exe
 main.cpp
 utilities.cpp)

This creates a build target, e.g. make my_exe for GNU make, with the appropriate invocations of the
configured compiler to produce an executable my_exe from the two source files main.cpp and
utilities.cpp.

By default, all executable targets are added to the builtin all target (all for GNU make, BUILD_ALL
for MSVC).
To exclude an executable from being built with the default all target, one can add the optional
parameter EXCLUDE_FROM_ALL right after the target name:

add_executable(my_optional_exe EXCLUDE_FROM_ALL main.cpp)

Libraries

To create an build target that creates an library, use the add_library command:

add_library(my_lib lib.cpp)

The CMake variable BUILD_SHARED_LIBS controls whenever to build an static (OFF) or an shared (ON)
library, using for example cmake .. -DBUILD_SHARED_LIBS=ON. However, you can explicitly set to build
an shared or an static library by adding STATIC or SHARED after the target name:

add_library(my_shared_lib SHARED lib.cpp) # Builds an shared library
add_library(my_static_lib STATIC lib.cpp) # Builds an static library

The actual output file differs between systems. For example, an shared library on Unix systems is
usually called libmy_shared_library.so, but on Windows it would be my_shared_library.dll and
my_shared_library.lib.

https://riptutorial.com/ 10

Like add_executable, add EXCLUDE_FROM_ALL before the list of source files to exclude it from the all
target:

add_library(my_lib EXCLUDE_FROM_ALL lib.cpp)

Libraries, that are designed to be loaded at runtime (for example plugins or applications using
something like dlopen), should use MODULE instead of SHARED/STATIC:

add_library(my_module_lib MODULE lib.cpp)

For example, on Windows, there won't be a import (.lib) file, because the symbols are directly
exported in the .dll.

Read Build Targets online: https://riptutorial.com/cmake/topic/3107/build-targets

https://riptutorial.com/ 11

https://riptutorial.com/cmake/topic/3107/build-targets

Chapter 5: CMake integration in GitHub CI
tools

Examples

Configure Travis CI with stock CMake

Travis CI has CMake 2.8.7 pre-installed.

A minimal .travis.yml script for an out-of source build

language: cpp

compiler:
 - gcc

before_script:
 # create a build folder for the out-of-source build
 - mkdir build
 # switch to build directory
 - cd build
 # run cmake; here we assume that the project's
 # top-level CMakeLists.txt is located at '..'
 - cmake ..

script:
 # once CMake has done its job we just build using make as usual
 - make
 # if the project uses ctest we can run the tests like this
 - make test

Configure Travis CI with newest CMake

The CMake version preinstalled on Travis is very old. You can use the official Linux binaries to
build with a newer version.

Here is an example .travis.yml:

language: cpp

compiler:
 - gcc

the install step will take care of deploying a newer cmake version
install:
 # first we create a directory for the CMake binaries
 - DEPS_DIR="${TRAVIS_BUILD_DIR}/deps"
 - mkdir ${DEPS_DIR} && cd ${DEPS_DIR}
 # we use wget to fetch the cmake binaries
 - travis_retry wget --no-check-certificate https://cmake.org/files/v3.3/cmake-3.3.2-Linux-
x86_64.tar.gz

https://riptutorial.com/ 12

https://cmake.org/download/

 # this is optional, but useful:
 # do a quick md5 check to ensure that the archive we downloaded did not get compromised
 - echo "f3546812c11ce7f5d64dc132a566b749 *cmake-3.3.2-Linux-x86_64.tar.gz" > cmake_md5.txt
 - md5sum -c cmake_md5.txt
 # extract the binaries; the output here is quite lengthy,
 # so we swallow it to not clutter up the travis console
 - tar -xvf cmake-3.3.2-Linux-x86_64.tar.gz > /dev/null
 - mv cmake-3.3.2-Linux-x86_64 cmake-install
 # add both the top-level directory and the bin directory from the archive
 # to the system PATH. By adding it to the front of the path we hide the
 # preinstalled CMake with our own.
 - PATH=${DEPS_DIR}/cmake-install:${DEPS_DIR}/cmake-install/bin:$PATH
 # don't forget to switch back to the main build directory once you are done
 - cd ${TRAVIS_BUILD_DIR}

before_script:
 # create a build folder for the out-of-source build
 - mkdir build
 # switch to build directory
 - cd build
 # run cmake; here we assume that the project's
 # top-level CMakeLists.txt is located at '..'
 - cmake ..

script:
 # once CMake has done its job we just build using make as usual
 - make
 # if the project uses ctest we can run the tests like this
 - make test

Read CMake integration in GitHub CI tools online: https://riptutorial.com/cmake/topic/1445/cmake-
integration-in-github-ci-tools

https://riptutorial.com/ 13

https://riptutorial.com/cmake/topic/1445/cmake-integration-in-github-ci-tools
https://riptutorial.com/cmake/topic/1445/cmake-integration-in-github-ci-tools

Chapter 6: Compile features and C/C++
standard selection

Syntax

target_compile_features(target PRIVATE|PUBLIC|INTERFACE feature1 [feature2 ...])•

Examples

Compile Feature Requirements

Required compiler features can be specified on a target using the command
target_compile_features:

add_library(foo
 foo.cpp
)
target_compile_features(foo
 PRIVATE # scope of the feature
 cxx_constexpr # list of features
)

The features must be part of CMAKE_C_COMPILE_FEATURES or
CMAKE_CXX_COMPILE_FEATURES; cmake reports an error otherwise. Cmake will add any
necessary flags such as -std=gnu++11 to the compile options of the target.

In the example, the features are declared PRIVATE: the requirements will be added to the target, but
not to its consumers. To automatically add the requirements to a target building against foo, PUBLIC
or INTERFACE should be used instead of PRIVATE:

target_compile_features(foo
 PUBLIC # this time, required as public
 cxx_constexpr
)

add_executable(bar
 main.cpp
)
target_link_libraries(bar
 foo # foo's public requirements and compile flags are added to bar
)

C/C++ version selection

Wanted version for C and C++ can be specified globally using respectively variables
CMAKE_C_STANDARD (accepted values are 98, 99 and 11) and CMAKE_CXX_STANDARD (accepted values are
98, 11 and 14):

https://riptutorial.com/ 14

https://cmake.org/cmake/help/v3.1/command/target_compile_features.html
https://cmake.org/cmake/help/v3.1/variable/CMAKE_C_COMPILE_FEATURES.html#variable:CMAKE_C_COMPILE_FEATURES
https://cmake.org/cmake/help/v3.1/variable/CMAKE_CXX_COMPILE_FEATURES.html#variable:CMAKE_CXX_COMPILE_FEATURES
https://cmake.org/cmake/help/latest/prop_tgt/C_STANDARD.html
https://cmake.org/cmake/help/latest/prop_tgt/CXX_STANDARD.html

set(CMAKE_C_STANDARD 99)
set(CMAKE_CXX_STANDARD 11)

These will add the needed compile options on targets (e.g. -std=c++11 for gcc).

The version can be made a requirement by setting to ON the variables CMAKE_C_STANDARD_REQUIRED
and CMAKE_CXX_STANDARD_REQUIRED respectively.

The variables must be set before target creation. The version can also be specified per-target:

set_target_properties(foo PROPERTIES
 CXX_STANDARD 11
 CXX_STANDARD_REQUIRED ON
)

Read Compile features and C/C++ standard selection online:
https://riptutorial.com/cmake/topic/5297/compile-features-and-c-cplusplus-standard-selection

https://riptutorial.com/ 15

https://riptutorial.com/cmake/topic/5297/compile-features-and-c-cplusplus-standard-selection

Chapter 7: Configure file

Introduction

configure_file is a CMake function for copying a file to another location and modify its contents.
This function is very useful for generating configuration files with paths, custom variables, using a
generic template.

Remarks

Copy a file to another location and modify its contents.

configure_file(<input> <output>
 [COPYONLY] [ESCAPE_QUOTES] [@ONLY]
 [NEWLINE_STYLE [UNIX|DOS|WIN32|LF|CRLF]])

Copies a file to file and substitutes variable values referenced in the file content. If is a relative
path it is evaluated with respect to the current source directory. The must be a file, not a directory.
If is a relative path it is evaluated with respect to the current binary directory. If names an existing
directory the input file is placed in that directory with its original name.

If the file is modified the build system will re-run CMake to re-configure the file and generate the
build system again.

This command replaces any variables in the input file referenced as ${VAR} or @VAR@ with their
values as determined by CMake. If a variable is not defined, it will be replaced with nothing. If
COPYONLY is specified, then no variable expansion will take place. If ESCAPE_QUOTES is
specified then any substituted quotes will be C-style escaped. The file will be configured with the
current values of CMake variables. If @ONLY is specified, only variables of the form @VAR@ will
be replaced and ${VAR} will be ignored. This is useful for configuring scripts that use ${VAR}.

Input file lines of the form “#cmakedefine VAR ...” will be replaced with either “#define VAR ...” or /*
#undef VAR */ depending on whether VAR is set in CMake to any value not considered a false
constant by the if() command. (Content of ”...”, if any, is processed as above.) Input file lines of the
form “#cmakedefine01 VAR” will be replaced with either “#define VAR 1” or “#define VAR 0”
similarly.

With NEWLINE_STYLE the line ending could be adjusted:

'UNIX' or 'LF' for \n, 'DOS', 'WIN32' or 'CRLF' for \r\n.

COPYONLY must not be used with NEWLINE_STYLE.

Examples

https://riptutorial.com/ 16

Generate a c++ configure file with CMake

If we have a c++ project that uses a config.h configuration file with some custom paths or
variables, we can generate it using CMake and a generic file config.h.in.

The config.h.in can be part of a git repository, while the generated file config.h will never be added,
as it is generated from the current environment.

#CMakeLists.txt
CMAKE_MINIMUM_REQUIRED(VERSION 2.8.11)

SET(PROJ_NAME "myproject")
PROJECT(${PROJ_NAME})

SET(${PROJ_NAME}_DATA "" CACHE PATH "This directory contains all DATA and RESOURCES")
SET(THIRDPARTIES_PATH ${CMAKE_CURRENT_SOURCE_DIR}/../thirdparties CACHE PATH "This
directory contains thirdparties")

configure_file ("${CMAKE_CURRENT_SOURCE_DIR}/common/config.h.in"
 "${CMAKE_CURRENT_SOURCE_DIR}/include/config.h")

If we have a config.h.in like this:

cmakedefine PATH_DATA "@myproject_DATA@"
cmakedefine THIRDPARTIES_PATH "@THIRDPARTIES_PATH@"

The previous CMakeLists will generate a c++ header like this:

#define PATH_DATA "/home/user/projects/myproject/data"
#define THIRDPARTIES_PATH "/home/user/projects/myproject/thirdparties"

Examble based on SDL2 control version

If you have a cmake module . You can create a folder called in to store all config files.

For example,you have a project called FOO, you can create a FOO_config.h.in file like:

//===
// CMake configuration file, based on SDL 2 version header
// ===

#pragma once

#include <string>
#include <sstream>

namespace yournamespace
{
 /**
 * \brief Information the version of FOO_PROJECT in use.
 *
 * Represents the library's version as three levels: major revision
 * (increments with massive changes, additions, and enhancements),
 * minor revision (increments with backwards-compatible changes to the

https://riptutorial.com/ 17

 * major revision), and patchlevel (increments with fixes to the minor
 * revision).
 *
 * \sa FOO_VERSION
 * \sa FOO_GetVersion
 */
typedef struct FOO_version
{
 int major; /**< major version */
 int minor; /**< minor version */
 int patch; /**< update version */
} FOO_version;

/* Printable format: "%d.%d.%d", MAJOR, MINOR, PATCHLEVEL
*/
#define FOO_MAJOR_VERSION 0
#define FOO_MINOR_VERSION 1
#define FOO_PATCHLEVEL 0

/**
 * \brief Macro to determine FOO version program was compiled against.
 *
 * This macro fills in a FOO_version structure with the version of the
 * library you compiled against. This is determined by what header the
 * compiler uses. Note that if you dynamically linked the library, you might
 * have a slightly newer or older version at runtime. That version can be
 * determined with GUCpp_GetVersion(), which, unlike GUCpp_VERSION(),
 * is not a macro.
 *
 * \param x A pointer to a FOO_version struct to initialize.
 *
 * \sa FOO_version
 * \sa FOO_GetVersion
 */
#define FOO_VERSION(x) \
{ \
 (x)->major = FOO_MAJOR_VERSION; \
 (x)->minor = FOO_MINOR_VERSION; \
 (x)->patch = FOO_PATCHLEVEL; \
}

/**
 * This macro turns the version numbers into a numeric value:
 * \verbatim
 (1,2,3) -> (1203)
 \endverbatim
 *
 * This assumes that there will never be more than 100 patchlevels.
 */
#define FOO_VERSIONNUM(X, Y, Z) \
 ((X)*1000 + (Y)*100 + (Z))

/**
 * This is the version number macro for the current GUCpp version.
 */
#define FOO_COMPILEDVERSION \
 FOO_VERSIONNUM(FOO_MAJOR_VERSION, FOO_MINOR_VERSION, FOO_PATCHLEVEL)

/**
 * This macro will evaluate to true if compiled with FOO at least X.Y.Z.
 */

https://riptutorial.com/ 18

#define FOO_VERSION_ATLEAST(X, Y, Z) \
 (FOO_COMPILEDVERSION >= FOO_VERSIONNUM(X, Y, Z))

}

// Paths
#cmakedefine FOO_PATH_MAIN "@FOO_PATH_MAIN@"

This file will create a FOO_config.h in the install path, with a variable defined in c FOO_PATH_MAIN from
cmake variable. To generate it you need to include in file in your CMakeLists.txt,like this (set paths
and variables):

MESSAGE("Configuring FOO_config.h ...")
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/common/in/FOO_config.h.in"
"${FOO_PATH_INSTALL}/common/include/FOO_config.h")

That file will contain the data from template, and variable with your real path, for example:

// Paths
#define FOO_PATH_MAIN "/home/YOUR_USER/Respositories/git/foo_project"

Read Configure file online: https://riptutorial.com/cmake/topic/8304/configure-file

https://riptutorial.com/ 19

https://riptutorial.com/cmake/topic/8304/configure-file

Chapter 8: Create test suites with CTest

Examples

Basic Test Suite

the usual boilerplate setup
cmake_minimum_required(2.8)
project(my_test_project
 LANGUAGES CXX)

tell CMake to use CTest extension
enable_testing()

create an executable, which instantiates a runner from
GoogleTest, Boost.Test, QtTest or whatever framework you use
add_executable(my_test
 test_main.cpp)

depending on the framework, you need to link to it
target_link_libraries(my_test
 gtest_main)

now register the executable with CTest
add_test(NAME my_test COMMAND my_test)

The macro enable_testing() does a lot of magic. First and foremost, it creates a builtin target test
(for GNU make; RUN_TESTS for VS), which, when run, executes CTest.

The call to add_test() finally registers an arbitrary executable with CTest, thus the executable gets
run whenever we call the test target.

Now, build the project as usual and finally run the test target

GNU Make Visual Studio

make test cmake --build . --target RUN_TESTS

Read Create test suites with CTest online: https://riptutorial.com/cmake/topic/4197/create-test-
suites-with-ctest

https://riptutorial.com/ 20

https://riptutorial.com/cmake/topic/4197/create-test-suites-with-ctest
https://riptutorial.com/cmake/topic/4197/create-test-suites-with-ctest

Chapter 9: Custom Build-Steps

Introduction

Custom build steps are useful to run custom targets in your project build or for easily copying files
so you don't have to do it manually (maybe dlls?). Here I'll show you two examples, the first is for
copying dlls (in particular Qt5 dlls) to your projects binary directory (either Debug or Release) and
the second is for running a custom target (Doxygen in this case) in your solution (if you're using
Visual Studio).

Remarks

As you can see, you can do a lot with custom build targets and steps in cmake, but you should be
careful in using them, especially when copying dlls. While it is convinient to do so, it can at times
result in what is affectionately called "dll hell".

Basically this means you can get lost in which dlls your executable actually depends on, which
ones its loading, and which ones it needs to run (maybe because of your computer's path
variable).

Other than the above caveat, feel free to make custom targets do whatever you want! They're
powerful and flexible and are an invaluable tool to any cmake project.

Examples

Qt5 dll copy example

So let's say you have a project that depends on Qt5 and you need to copy the relevant dlls to your
build directory and you don't want to do it manually; you can do the following:

cmake_minimum_required(VERSION 3.0)
project(MyQtProj LANGUAGES C CXX)
find_package(Qt5 COMPONENTS Core Gui Widgets)
#...set up your project

add the executable
add_executable(MyQtProj ${PROJ_SOURCES} ${PROJ_HEADERS})

add_custom_command(TARGET MyQtProj POST_BUILD
 COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:Qt5::Core>
$<TARGET_FILE_DIR:MyQtProj>
 COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:Qt5::Gui>
$<TARGET_FILE_DIR:MyQtProj>
 COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:Qt5::Widgets>
$<TARGET_FILE_DIR:MyQtProj>
)

So now everytime you build your project, if the target dlls have changed that you want to copy,

https://riptutorial.com/ 21

then they will be copied after your target (in this case the main executable) is built (notice the
copy_if_different command); otherwise, they will not be copied.

Additionally, note the use of generator expressions here. The advantage with using these is that
you don't have to explicitly say where to copy dlls or which variants to use. To be able to use these
though, the project you're using (Qt5 in this case) must have imported targets.

If you're building in debug, then CMake knows (based on the imported target) to copy the
Qt5Cored.dll, Qt5Guid.dll, and Qt5Widgetsd.dll to the Debug folder of you build folder. If you're
building in release, then the release versions of the .dlls will be copied to the release folder.

Running a Custom Target

You can also create a custom target to run when you want to perform a particular task. These are
typically executables that you run to do different things. Something that may be of particular use is
to run Doxygen to generate documentation for your project. To do this you can do the following in
your CMakeLists.txt (for the sake of simplicity we'll contiue our Qt5 project example):

cmake_minimum_required(VERSION 3.0)
project(MyQtProj LANGUAGES C CXX)
find_package(Qt5 COMPONENTS Core Gui Widgets)
#...set up your project

add_executable(MyQtProj ${PROJ_SOURCES} ${PROJ_HEADERS})

add_custom_command(TARGET MyQtProj POST_BUILD
 COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:Qt5::Core>
$<TARGET_FILE_DIR:MyQtProj>
 COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:Qt5::Gui>
$<TARGET_FILE_DIR:MyQtProj>
 COMMAND ${CMAKE_COMMAND} -E copy_if_different $<TARGET_FILE:Qt5::Widgets>
$<TARGET_FILE_DIR:MyQtProj>
)

#Add target to build documents from visual studio.
set(DOXYGEN_INPUT ${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile)
#set the output directory of the documentation
set(DOXYGEN_OUTPUT_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
sanity check...
message("Doxygen Output ${DOXYGEN_OUTPUT_DIR}")
find_package(Doxygen)

if(DOXYGEN_FOUND)
 # create the output directory where the documentation will live
 file(MAKE_DIRECTORY ${DOXYGEN_OUTPUT_DIR})
 # configure our Doxygen configuration file. This will be the input to the doxygen
 # executable
 configure_file(${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile.in
 ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile @ONLY)

now add the custom target. This will create a build target called 'DOCUMENTATION'
in your project
ADD_CUSTOM_TARGET(DOCUMENTATION
 COMMAND ${CMAKE_COMMAND} -E echo_append "Building API Documentation..."
 COMMAND ${CMAKE_COMMAND} -E make_directory ${DOXYGEN_OUTPUT_DIR}
 COMMAND ${DOXYGEN_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile

https://riptutorial.com/ 22

https://cmake.org/cmake/help/v3.3/manual/cmake-generator-expressions.7.html
http://www.stack.nl/~dimitri/doxygen/

 WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
 COMMAND ${CMAKE_COMMAND} -E echo "Done."
 WORKING_DIRECTORY ${DOXYGEN_OUTPUT_DIR})

endif(DOXYGEN_FOUND)

Now when we create our solution (again assuming you're using Visual Studio), you'll have a build
target called DOCUMENTATION that you can build to regenerate your project's documentation.

Read Custom Build-Steps online: https://riptutorial.com/cmake/topic/9537/custom-build-steps

https://riptutorial.com/ 23

https://riptutorial.com/cmake/topic/9537/custom-build-steps

Chapter 10: Functions and Macros

Remarks

The main difference between macros and functions is, that macros are evaluated within the
current context, while functions open a new scope within the current one. Thus, variables defined
within functions are not known after the function has been evaluated. On the contrary, variables
within macros are still defined after the macro has been evaluated.

Examples

Simple Macro to define a variable based on input

macro(set_my_variable _INPUT)
 if("${_INPUT}" STREQUAL "Foo")
 set(my_output_variable "foo")
 else()
 set(my_output_variable "bar")
 endif()
endmacro(set_my_variable)

Use the macro:

set_my_variable("Foo")
message(STATUS ${my_output_variable})

will print

-- foo

while

set_my_variable("something else")
message(STATUS ${my_output_variable})

will print

-- bar

Macro to fill a variable of given name

macro(set_custom_variable _OUT_VAR)
 set(${_OUT_VAR} "Foo")
endmacro(set_custom_variable)

Use it with

https://riptutorial.com/ 24

set_custom_variable(my_foo)
message(STATUS ${my_foo})

which will print

-- Foo

Read Functions and Macros online: https://riptutorial.com/cmake/topic/2096/functions-and-macros

https://riptutorial.com/ 25

https://riptutorial.com/cmake/topic/2096/functions-and-macros

Chapter 11: Hierarchical project

Examples

Simple approach without packages

Example that builds an executable (editor) and links a library (highlight) to it. Project structure is
straightforward, it needs a master CMakeLists and a directory for each subproject:

CMakeLists.txt
editor/
 CMakeLists.txt
 src/
 editor.cpp
highlight/
 CMakeLists.txt
 include/
 highlight.h
 src/
 highlight.cpp

The master CMakeLists.txt contains global definitions and add_subdirectory call for each
subproject:

cmake_minimum_required(VERSION 3.0)
project(Example)

add_subdirectory(highlight)
add_subdirectory(editor)

CMakeLists.txt for the library assigns sources and include directories to it. By using
target_include_directories() instead of include_directories() the include dirs will be propagated to
library users:

cmake_minimum_required(VERSION 3.0)
project(highlight)

add_library(${PROJECT_NAME} src/highlight.cpp)
target_include_directories(${PROJECT_NAME} PUBLIC include)

CMakeLists.txt for the application assigns sources and links the highlight library. Paths to
hightlighter's binary and includes are handled automaticaly by cmake:

cmake_minimum_required(VERSION 3.0)
project(editor)

add_executable(${PROJECT_NAME} src/editor.cpp)
target_link_libraries(${PROJECT_NAME} PUBLIC highlight)

Read Hierarchical project online: https://riptutorial.com/cmake/topic/1443/hierarchical-project

https://riptutorial.com/ 26

https://riptutorial.com/cmake/topic/1443/hierarchical-project

Chapter 12: Packaging and Distributing
Projects

Syntax

Package a build directory
pack [PATH]

•

Use a specific generator
cpack -G [GENERATOR] [PATH]

•

Provide optional overrides•
cpack -G [GENERATOR] -C [CONFIGURATION] -P [PACKAGE NAME] -R [PACKAGE
VERSION] -B [PACKAGE DIRECTORY] --vendor [PACKAGE VENDOR]

•

Remarks

CPack is an external tool allowing the fast packaging of built CMake projects by gathering all the
required data straight from the CMakeLists.txt files and the utilized installation commands like
install_targets().

For CPack to properly work, the CMakeLists.txt must include files or targets to be installed using
the install build target.

A minimal script could look like this:

Required headers
cmake(3.0)

Basic project setup
project(my-tool)

Define a buildable target
add_executable(tool main.cpp)

Provide installation instructions
install_targets(tool DESTINATION bin)

Examples

Creating a package for a built CMake project

To create a redistributable package (e.g. a ZIP archive or setup program), it's usually enough to
simply invoke CPack using a syntax very similar to calling CMake:

cpack path/to/build/directory

https://riptutorial.com/ 27

Depending on the environment this will gather all required/installed files for the project and put
them into a compressed archive or self-extracting installer.

Selecting a CPack Generator to be used

To create a package using a specific format, it is possible to pick the Generator to be used.

Similar to CMake this may be done using the -G argument:

cpack -G 7Z .

Using this command line would package the built project in the current directory using the 7-Zip
archive format.

At the time of writing, CPack version 3.5 supports the following generators by default:

7Z 7-Zip file format (archive)•
IFW Qt Installer Framework (executable)•
NSIS Null Soft Installer (executable)•
NSIS64 Null Soft Installer (64-bit, executable)•
STGZ Self extracting Tar GZip compression (archive)•
TBZ2 Tar BZip2 compression (archive)•
TGZ Tar GZip compression (archive)•
TXZ Tar XZ compression (archive)•
TZ Tar Compress compression (archive)•
WIX MSI file format via WiX tools (executable archive)•
ZIP ZIP file format (archive)•

If no explicit generator is provided, CPack will try to determine the best available depending on the
actual environment. For example, it will prefer creating a self-extracting executable on Windows
and only create a ZIP archive if no suitable toolset is found.

Read Packaging and Distributing Projects online:
https://riptutorial.com/cmake/topic/4368/packaging-and-distributing-projects

https://riptutorial.com/ 28

https://riptutorial.com/cmake/topic/4368/packaging-and-distributing-projects

Chapter 13: Search and use installed
packages, libraries and programs

Syntax

find_package(pkgname [version] [EXACT] [QUIET] [REQUIRED])•
include(FindPkgConfig)•
pkg_search_module(prefix [REQUIRED] [QUIET] pkgname [otherpkg...])•
pkg_check_modules(prefix [REQUIRED] [QUIET] pkgname [otherpkg...])•

Parameters

Parameter Details

version
(optional)

Minimum version of the package defined by a major number and optionally
a minor, patch and tweak number, in the format major.minor.patch.tweak

EXACT
(optional)

Specify that the version specified in version is the exact version to be found

REQUIRED
(optional)

Automatically throws an error and stop the process if the package is not
found

QUIET
(optional)

The function won't send any message to the standard output

Remarks

The find_package way is compatible on all platform, whereas the pkg-config way is available
only on Unix-like platforms, like Linux and OSX.

•

A full description of the find_package numerous parameters and options can be found in the
manual.

•

Even though it is possible to specify many optional parameters such as the version of the
package, not all Find modules properly uses all those parameters. If any undefined
behaviour occur, it could be necessary to find the module in CMake's install path and fix or
understand its behaviour.

•

Examples

Use find_package and Find.cmake modules

https://riptutorial.com/ 29

https://cmake.org/cmake/help/v3.6/command/find_package.html

The default way to find installed packages with CMake is the use the find_package function in
conjunction with a Find<package>.cmake file. The purpose of the file is to define the search rules for
the package and set different variables, such as <package>_FOUND, <package>_INCLUDE_DIRS and
<package>_LIBRARIES.

Many Find<package>.cmake file are already defined by default in CMake. However, if there is no file
for the package you need, you can always write your own and put it inside
${CMAKE_SOURCE_DIR}/cmake/modules (or any other directory if CMAKE_MODULE_PATH was overridden)

A list of default modules can be found in the manual (v3.6). It is essential to check the manual
according to the version of CMake used in the project or else there could be missing modules. It is
also possible to find the installed modules with cmake --help-module-list.

There is a nice example for a FindSDL2.cmake on Github

Here's a basic CMakeLists.txt that would require SDL2:

cmake_minimum_required(2.8 FATAL_ERROR)
project("SDL2Test")

set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH} ${CMAKE_SOURCE_DIR}/cmake/modules")
find_package(SDL2 REQUIRED)

include_directories(${SDL2_INCLUDE_DIRS})
add_executable(${PROJECT_NAME} main.c)
target_link_libraries(${PROJECT_NAME} ${SDL2_LIBRARIES})

Use pkg_search_module and pkg_check_modules

On Unix-like operating systems, it is possible to use the pkg-config program to find and configure
packages that provides a <package>.pc file.

In order to use pkg-config, it is necessary to call include(FindPkgConfig) in a CMakeLists.txt. Then,
there are 2 possible functions:

pkg_search_module, which checks for the package and uses the first available.•
pkg_check_modules, which check for all the corresponding packages.•

Here's a basic CMakeLists.txt that uses pkg-config to find SDL2 with version above or equal to
2.0.1:

cmake_minimum_required(2.8 FATAL_ERROR)
project("SDL2Test")

include(FindPkgConfig)
pkg_search_module(SDL2 REQUIRED sdl2>=2.0.1)

include_directories(${SDL2_INCLUDE_DIRS})
add_executable(${PROJECT_NAME} main.c)
target_link_libraries(${PROJECT_NAME} ${SDL2_LIBRARIES})

Read Search and use installed packages, libraries and programs online:

https://riptutorial.com/ 30

https://cmake.org/cmake/help/v3.6/manual/cmake-modules.7.html
https://github.com/WebAssembly/wasmint/blob/master/cmake/FindSDL2.cmake

https://riptutorial.com/cmake/topic/6752/search-and-use-installed-packages--libraries-and-
programs

https://riptutorial.com/ 31

https://riptutorial.com/cmake/topic/6752/search-and-use-installed-packages--libraries-and-programs
https://riptutorial.com/cmake/topic/6752/search-and-use-installed-packages--libraries-and-programs

Chapter 14: Test and Debug

Examples

General approach to debug when building with Make

Suppose the make fails:

$ make

Launch it instead with make VERBOSE=1 to see the commands executed. Then directly run the linker
or compiler command that you'll see. Try to make it work by adding necessary flags or libraries.

Then figure out what to change, so CMake itself can pass correct arguments to the compiler/linker
command:

what to change in the system (what libraries to install, which versions, versions of CMake
itself)

•

if previous fails, what environment variables to set or parameters to pass to CMake•
otherwise, what to change in the CMakeLists.txt of the project or the library detection scripts
like FindSomeLib.cmake

•

To help in that, add message(${MY_VARIABLE}) calls into CMakeLists.txt or *.cmake to debug variables
that you want to inspect.

Let CMake create verbose Makefiles

Once a CMake project is initialized via project(), the output verbosity of the resulting build script
can be adjusted via:

CMAKE_VERBOSE_MAKEFILE

This variable can be set via CMake's command line when configuring a project:

cmake -DCMAKE_VERBOSE_MAKEFILE=ON <PATH_TO_PROJECT_ROOT>

For GNU make this variable has the same effect as running make VERBOSE=1.

Debug find_package() errors

Note: The shown CMake error messages already include the fix for "non-standard" library/tool
installation paths. The following examples just demonstrate more verbose CMake find_package()
outputs.

https://riptutorial.com/ 32

CMake internally supported Package/Module

If the following code (replace the FindBoost module with your module in question)

cmake_minimum_required(VERSION 2.8)
project(FindPackageTest)

find_package(Boost REQUIRED)

gives some error like

CMake Error at [...]/Modules/FindBoost.cmake:1753 (message):
 Unable to find the requested Boost libraries.

 Unable to find the Boost header files. Please set BOOST_ROOT to the root
 directory containing Boost or BOOST_INCLUDEDIR to the directory containing
 Boost's headers.

And you're wondering where it tried to find the library, you can check if your package has an _DEBUG
option like the Boost module has for getting more verbose output

$ cmake -D Boost_DEBUG=ON ..

CMake enabled Package/Library

If the following code (replace the Xyz with your library in question)

cmake_minimum_required(VERSION 2.8)
project(FindPackageTest)

find_package(Xyz REQUIRED)

gives the some error like

CMake Error at CMakeLists.txt:4 (find_package):
 By not providing "FindXyz.cmake" in CMAKE_MODULE_PATH this project has
 asked CMake to find a package configuration file provided by "Xyz", but
 CMake did not find one.

 Could not find a package configuration file provided by "Xyz" with any of
 the following names:

 XyzConfig.cmake
 xyz-config.cmake

 Add the installation prefix of "Xyz" to CMAKE_PREFIX_PATH or set "Xyz_DIR"
 to a directory containing one of the above files. If "Xyz" provides a
 separate development package or SDK, be sure it has been installed.

And you're wondering where it tried to find the library, you can use the undocumented

https://riptutorial.com/ 33

https://cmake.org/cmake/help/v3.0/module/FindBoost.html
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html
https://cmake.org/Wiki/CMake:How_To_Find_Libraries

CMAKE_FIND_DEBUG_MODE global variable for getting a more verbose output

$ cmake -D CMAKE_FIND_DEBUG_MODE=ON ..

Read Test and Debug online: https://riptutorial.com/cmake/topic/4098/test-and-debug

https://riptutorial.com/ 34

https://riptutorial.com/cmake/topic/4098/test-and-debug

Chapter 15: Using CMake to configure
preproccessor tags

Introduction

The use of CMake in a C++ project if used correctly can allow the programmer to focus less on the
platform, program version number and more on the actual program itself. With CMake you can
define preprocessor tags that allow for easy checking of which platform or any other preprocessor
tags you might need in the actual program. Such as the version number which could be leveraged
in a log system.

Syntax

#define preprocessor_name "@cmake_value@"•

Remarks

It is important to understand not every preprocessor should be defined in the config.h.in.
Preprocessor tags are generally used only to make the programmers life easier and should be
used with discretion. You should research if a preprocessor tag already exists before defining it as
you may run into undefined behavior on different system.

Examples

Using CMake to define the version number for C++ usage

The possibilities are endless. as you can use this concept to pull the version number from your
build system; such as git and use that version number in your project.

CMakeLists.txt

cmake_minimum_required(VERSION 3.8)
project(project_name VERSION "0.0.0")

configure_file(${path to configure file 'config.h.in'}
include_directories(${PROJECT_BINARY_BIN}) // this allows the 'config.h' file to be used
throughout the program

...

config.h.in

#ifndef INCLUDE_GUARD
#define INCLUDE_GUARD

https://riptutorial.com/ 35

#define PROJECT_NAME "@PROJECT_NAME@"
#define PROJECT_VER "@PROJECT_VERSION@"
#define PROJECT_VER_MAJOR "@PROJECT_VERSION_MAJOR@"
#define PROJECT_VER_MINOR "@PROJECT_VERSION_MINOR@"
#define PTOJECT_VER_PATCH "@PROJECT_VERSION_PATCH@"

#endif // INCLUDE_GUARD

main.cpp

#include <iostream>
#include "config.h"
int main()
{
 std::cout << "project name: " << PROJECT_NAME << " version: " << PROJECT_VER << std::endl;
 return 0;
}

output

project name: project_name version: 0.0.0

Read Using CMake to configure preproccessor tags online:
https://riptutorial.com/cmake/topic/10885/using-cmake-to-configure-preproccessor-tags

https://riptutorial.com/ 36

https://riptutorial.com/cmake/topic/10885/using-cmake-to-configure-preproccessor-tags

Chapter 16: Variables and Properties

Introduction

The simplicity of basic CMake variables belies the complexity of the full variable syntax. This page
documents the various variable cases, with examples, and points out the pitfalls to avoid.

Syntax

set(variable_name value [CACHE type description [FORCE]])•

Remarks

Variable names are case-sensitive. Their values are of type string. The value of a variable is
referenced via:

${variable_name}

and is evaluated inside a quoted argument

"${variable_name}/directory"

Examples

Cached (Global) Variable

set(my_global_string "a string value"
 CACHE STRING "a description about the string variable")
set(my_global_bool TRUE
 CACHE BOOL "a description on the boolean cache entry")

In case a cached variable is already defined in the cache when CMake processes the respective
line (e.g. when CMake is rerun), it is not altered. To overwrite the default, append FORCE as the last
argument:

set(my_global_overwritten_string "foo"
 CACHE STRING "this is overwritten each time CMake is run" FORCE)

Local Variable

set(my_variable "the value is a string")

By default, a local variable is only defined in the current directory and any subdirectories added

https://riptutorial.com/ 37

through the add_subdirectory command.

To extend the scope of a variable there are two possibilities:

CACHE it, which will make it globally available1.

use PARENT_SCOPE, which will make it available in the parent scope. The parent scope is either
the CMakeLists.txt file in the parent directory or caller of the current function.

Technically the parent directory will be the CMakeLists.txt file that included the current file via
the add_subdirectory command.

2.

Strings and Lists

It's important to know how CMake distinguishes between lists and plain strings. When you write:

set(VAR "a b c")

you create a string with the value "a b c". But when you write this line without quotes:

set(VAR a b c)

You create a list of three items instead: "a", "b" and "c".

Non-list variables are actually lists too (of a single element).

Lists can be operated on with the list() command, which allows concatenating lists, searching
them, accessing arbitrary elements and so on (documentation of list()).

Somewhat confusing, a list is also a string. The line

set(VAR a b c)

is equivalent to

set(VAR "a;b;c")

Therefore, to concatenate lists one can also use the set() command:

set(NEW_LIST "${OLD_LIST1};${OLD_LIST2})"

Variables and the Global Variables Cache

Mostly you will use "normal variables":

set(VAR TRUE)
set(VAR "main.cpp")
set(VAR1 ${VAR2})

But CMake does also know global "cached variables" (persisted in CMakeCache.txt). And if normal
and cached variables of the same name exist in the current scope, normal variables do hide the
cached ones:

https://riptutorial.com/ 38

https://cmake.org/cmake/help/latest/command/list.html
https://cmake.org/cmake/help/latest/command/set.html#set-normal-variable
https://cmake.org/cmake/help/latest/command/set.html#set-cache-entry

cmake_minimum_required(VERSION 2.4)
project(VariablesTest)

set(VAR "CACHED-init" CACHE STRING "A test")
message("VAR = ${VAR}")

set(VAR "NORMAL")
message("VAR = ${VAR}")

set(VAR "CACHED" CACHE STRING "A test" FORCE)
message("VAR = ${VAR}")

First Run's Output

VAR = CACHED-init
VAR = NORMAL
VAR = CACHED

Second Run's Output

VAR = CACHED
VAR = NORMAL
VAR = CACHED

Note: The FORCE option does also unset/remove the normal variable from the current scope.

Use Cases for Cached Variables

There are typically two use cases (please don't misuse them for global variables):

An value in your code should be modifiable from your project's user e.g. with the cmakegui,
ccmake or with cmake -D ... option:

CMakeLists.txt / MyToolchain.cmake

set(LIB_A_PATH "/some/default/path" CACHE PATH "Path to lib A")

Command Line

$ cmake -D LIB_A_PATH:PATH="/some/other/path" ..

This does pre-set this value in the cache and the above line will not modify it.

CMake GUI

In the GUI the user first starts the configuration process, then can modify any cached value

1.

https://riptutorial.com/ 39

https://cmake.org/cmake/help/latest/manual/cmake-gui.1.html
https://cmake.org/cmake/help/latest/manual/ccmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
http://i.stack.imgur.com/YFDoN.png

and finishes with starting the build environment generation.

Additionally CMake does cache search/test/compiler identification results (so it does not
need to do it again whenever re-running the configuration/generation steps)

find_path(LIB_A_PATH libA.a PATHS "/some/default/path")

Here LIB_A_PATH is created as a cached variable.

2.

Adding profiling flags to CMake to use gprof

The series of events here is supposed to work as follows:

Compile code with -pg option1.
Link code with -pg option2.
Run program3.
Program generates gmon.out file4.
Run gprof program5.

To add profiling flags, you must add to your CMakeLists.txt:

SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pg")
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pg")
SET(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -pg")

That must add flags to compile and link, and use after execute the program:

gprof ./my_exe

If you get an error like:

gmon.out: No such file or directory

That means that compilation didn't add profiling info properly.

Read Variables and Properties online: https://riptutorial.com/cmake/topic/2091/variables-and-
properties

https://riptutorial.com/ 40

https://riptutorial.com/cmake/topic/2091/variables-and-properties
https://riptutorial.com/cmake/topic/2091/variables-and-properties

Credits

S.
No

Chapters Contributors

1
Getting started with
cmake

Amani, arrowd, ComicSansMS, Community, Daniel Schepler,
dontloo, Fantastic Mr Fox, fedepad, Florian, greatwolf, Mario,
Neui, OliPro007, Torbjörn, Ziv

2
Add Directories to
Compiler Include
Path

kiki, Torbjörn

3 Build Configurations Jav_Rock

4 Build Targets arrowd, Neui, Torbjörn

5
CMake integration in
GitHub CI tools

ComicSansMS

6
Compile features
and C/C++ standard
selection

wasthishelpful

7 Configure file Jav_Rock, Shihe Zhang, vgonisanz

8
Create test suites
with CTest

arrowd, ComicSansMS, Torbjörn

9 Custom Build-Steps Developer Paul

10
Functions and
Macros

Torbjörn

11 Hierarchical project Adam Trhon, Anedar, Clare Macrae, Robert

12
Packaging and
Distributing Projects

Mario, Meysam, Neui

13

Search and use
installed packages,
libraries and
programs

OliPro007

14 Test and Debug Florian, Torbjörn, Velkan

Using CMake to
configure

15 JVApen, Matthew

https://riptutorial.com/ 41

https://riptutorial.com/contributor/852063/amani
https://riptutorial.com/contributor/637669/arrowd
https://riptutorial.com/contributor/577603/comicsansms
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6301420/daniel-schepler
https://riptutorial.com/contributor/3041068/dontloo
https://riptutorial.com/contributor/1294207/fantastic-mr-fox
https://riptutorial.com/contributor/7282091/fedepad
https://riptutorial.com/contributor/4763489/florian
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/409744/mario
https://riptutorial.com/contributor/4792805/neui
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/299713/ziv
https://riptutorial.com/contributor/2512608/kiki
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/744859/jav-rock
https://riptutorial.com/contributor/637669/arrowd
https://riptutorial.com/contributor/4792805/neui
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/577603/comicsansms
https://riptutorial.com/contributor/6612932/wasthishelpful
https://riptutorial.com/contributor/744859/jav-rock
https://riptutorial.com/contributor/1278112/shihe-zhang
https://riptutorial.com/contributor/1077364/vgonisanz
https://riptutorial.com/contributor/637669/arrowd
https://riptutorial.com/contributor/577603/comicsansms
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/3739316/developer-paul
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/446252/adam-trhon
https://riptutorial.com/contributor/3193464/anedar
https://riptutorial.com/contributor/104370/clare-macrae
https://riptutorial.com/contributor/2152166/robert
https://riptutorial.com/contributor/409744/mario
https://riptutorial.com/contributor/69537/meysam
https://riptutorial.com/contributor/4792805/neui
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/4763489/florian
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/4742108/velkan
https://riptutorial.com/contributor/2466431/jvapen
https://riptutorial.com/contributor/7253878/matthew

preproccessor tags

16
Variables and
Properties

arrowd, CivFan, Florian, Torbjörn, Trilarion, Trygve Laugstøl,
vgonisanz

https://riptutorial.com/ 42

https://riptutorial.com/contributor/637669/arrowd
https://riptutorial.com/contributor/2125392/civfan
https://riptutorial.com/contributor/4763489/florian
https://riptutorial.com/contributor/588243/torbjorn
https://riptutorial.com/contributor/1536976/trilarion
https://riptutorial.com/contributor/245614/trygve-laugstol
https://riptutorial.com/contributor/1077364/vgonisanz

	About
	Chapter 1: Getting started with cmake
	Remarks
	Versions
	Examples
	CMake Installation
	Switching between build types, e.g. debug and release
	Simple "Hello World" Project
	"Hello World" with multiple source files
	"Hello World" as a library

	Chapter 2: Add Directories to Compiler Include Path
	Syntax
	Parameters
	Examples
	Add a Project's Subdirectory

	Chapter 3: Build Configurations
	Introduction
	Examples
	Setting a Release/Debug configuration

	Chapter 4: Build Targets
	Syntax
	Examples
	Executables
	Libraries

	Chapter 5: CMake integration in GitHub CI tools
	Examples
	Configure Travis CI with stock CMake
	Configure Travis CI with newest CMake

	Chapter 6: Compile features and C/C++ standard selection
	Syntax
	Examples
	Compile Feature Requirements
	C/C++ version selection

	Chapter 7: Configure file
	Introduction
	Remarks
	Examples
	Generate a c++ configure file with CMake
	Examble based on SDL2 control version

	Chapter 8: Create test suites with CTest
	Examples
	Basic Test Suite

	Chapter 9: Custom Build-Steps
	Introduction
	Remarks
	Examples
	Qt5 dll copy example
	Running a Custom Target

	Chapter 10: Functions and Macros
	Remarks
	Examples
	Simple Macro to define a variable based on input
	Macro to fill a variable of given name

	Chapter 11: Hierarchical project
	Examples
	Simple approach without packages

	Chapter 12: Packaging and Distributing Projects
	Syntax
	Remarks
	Examples
	Creating a package for a built CMake project
	Selecting a CPack Generator to be used

	Chapter 13: Search and use installed packages, libraries and programs
	Syntax
	Parameters
	Remarks
	Examples
	Use find_package and Find.cmake modules
	Use pkg_search_module and pkg_check_modules

	Chapter 14: Test and Debug
	Examples
	General approach to debug when building with Make
	Let CMake create verbose Makefiles
	Debug find_package() errors

	CMake internally supported Package/Module
	CMake enabled Package/Library
	Chapter 15: Using CMake to configure preproccessor tags
	Introduction
	Syntax
	Remarks
	Examples
	Using CMake to define the version number for C++ usage

	Chapter 16: Variables and Properties
	Introduction
	Syntax
	Remarks
	Examples
	Cached (Global) Variable
	Local Variable
	Strings and Lists
	Variables and the Global Variables Cache

	Use Cases for Cached Variables
	Adding profiling flags to CMake to use gprof

	Credits

